Tabel Chi Square Tutorial Lengkap


Tabel Chi Square Tutorial Lengkap – Dalam ilmu statistika, kita akan menemukan berbagai cara dalam menentukan uji hipotesis yang salah satunya adalah dengan cara metode chi-square atau dapat dikenal dengan istilah kai kuadrat. Chi-square menjadi salah satu kunci yang dapat kita terapkan dalam mencari nilai jenis uji komparatif non-parametris dan dengan dua variabel.



Pada dua variabel dalam sebuah uji hipotesis dapat berupa skala nominal. Apabila dari 2 variabel terdapat 1 variabel dengan skala nominal dapat menerapkan uji chi-square yang merujuk pada uji derajat terendah. Biasanya, uji non-parametris paling banyak digunakan dengan mengetahui beberapa syarat frekuensi responden atau sampel yang digunakannya.

Baca juga: R Tabel dalam Statistika dan Contohnya

Tabel chi-square sendiri merupakan salah satu jenis tabel dalam statistika yang didasarkan pada distribusi kai kuadrat (chi-square). Tabel ini digunakan untuk menentukan daerah kritis di dalam pengujian kesesuaian /kecocokan (goodness of fit test), uji homogenitas, dan uji independensi.

Pada pembahasan kali ini, kalian akan mempelajari mengenai penerapan tabel chi-square dengan mengenai kegunaan dan bagian-bagiannya sehingga dapat membaca hasilnya. Berikut pembahasannya.

Baca juga: Cara Membuat R Tabel Product Moment

Kegunaan Tabel Chi-Square

Pada analisis uji statistik dapat menggunakan distribusi chi-square perlu adanya perbandingan dengan batas yang dapat digunakan untuk memutuskan hipotesisnya diterima atau tidak. Dengan begitu, perlu penggunaan tabel chi-square yang dapat memutuskan hasil dari analisis. Berikut dapat kita lihat batasan dari distribusi chi-square.



Dari kurva di atas dapat kita lihat bahwa bentuk distribusi chi-square. Pada bagian area yang hitam terdapat daerah tolak hipotesis, sedangkan yang putih untuk keputusan terima hipotesis awal. Garis pemisah antar-dua daerah merupakan sebuah gambaran dari tabel chi-square. Dari bentuk kurva sendiri dapat diketahui bahwa x2 akan selalu bernilai positif dan akan dipengaruhi oleh nilai derajat bebas atau v. Semakin besar nilai derajat bebas maka kurva distribusi square akan mendekati distribusi normal.

Baca juga: Cara Membuat R Tabel Uji Validitas

Selain itu, dalam memutuskan dengan menganalisis apakah menolak atau menerima hipotesis awal yang tidak hanya dengan cara membandingkan tabelnya. Tabel chi-square umumnya juga dapat digunakan untuk melihat nilai peluang signifikansi yang dapat disimbolkan dengan (sig). Biasanya, jika nilainya lebih kecil menjadikan keputusan tolak hipotesis awal dan sebaliknya. Dalam menggunakan tabel chi-square dapat memperhatikan syarat-syarat berikut.

  1. Tidak ada cell dengan nilai frekuensi kenyataan atau disebut juga Actual Count (F0) sebesar 0 (Nol).
  2. Apabila bentuk tabel kontingensi 2 X 2, tidak boleh ada 1 cell saja yang memiliki frekuensi harapan atau disebut juga expected count (“Fh”) kurang dari 5.
  3. Apabila bentuk tabel lebih dari 2 x 2, misal 2 x 3, jumlah cell dengan frekuensi harapan yang kurang dari 5 tidak boleh lebih dari 20%.

Fungsi lainnya dari uji chi-square adalah untuk menentukan nilai kritis. Nilai kritis ini sendiri sifatnya penting dalam uji hipotesis maupun dalam menentukan interval kepercayaan.  Misalnya, dalam menguji hipotesis nilai kritis dapat berfungsi dalam memberitahu batasan tentang seberapa ekstrem statistik pengujian yang dibutuhkan untuk mengolah hipotesis nol. Lalu, untuk interval keyakinan dapat membahas nilai kritis menjadi bahan yang masuk dalam perhitungan margin of errors.

Baca juga: Rumus Dan Cara Menghitung Jangkauan atau Rentang

Bagian-bagian Tabel Chi-Square

Tabel chi-square memiliki beberapa karakteristik atau ciri yang spesifik sehingga dapat memudahkan kita mengenali tabel ini. Berikut beberapa karakteristiknya.



  1. Nilai chi-square pada umumnya adalah positif
  2. Distribusi pada chi-square dapat disertai dengan distribusi chi square dengan DK sama dengan 1,2,3 hingga seterusnya.
  3. Derajat kebebasan atau degree of freedom (df) pada chi square adalah df = k-1 dengan k adalah jumlah kategori.
  4. Bentuk distribusi pada jenis tabel ini tidak lagi ditentukan jumlah sampel yang dipakai, melainkan bergantung pada banyaknya derajat kebebasan (degree of freedom).
  5. Distribusi pada chi-square berbentuk menjulur positif dapat diartikan dengan semakin besar degree of freedom maka semakin dekat pada distribusi normal.

Karakteristik dari sebuah tabel chi-square juga dapat kita pahami dari beberapa bagian-bagiannya sebagai berikut.

  1. Titik kritis (alpha) merupakan bagian chi-square yang berupa nilai peluang dari tingkat kesalahan yang dapat diterima. Nilai yang sering digunakan yaitu 0.05 (5%) dan nilai ini ditentukan oleh peneliti sebelumnya.
  2. Degree of freedom (df) atau derajat kebebasan dapat digunakan untuk menentukan nilai degree of freedom yang berbeda-beda setiap metode yang digunakan. Namun, umumnya jumlah sampel adalah (n)-1.
  3. Nilai tabel chi-square merupakan nilai batas tolak atau terima hipotesis awal. Dalam pencarian hipotesis, hasil nilai tabel ini yang dapat kita simpulkan.

Baca juga: Cara Menentukan Simpangan Kuartil Dengan Mudah

Cara Membaca Tabel Chi-Square

Dalam pembacaan tabel chi-square, dapat perlu kita ketahui α atau tingkat signifikansi dan vv atau derajat bebas (degree of freedom). Nilai alpha atau α biasanya sudah ditetapkan sesuai dengan kebutuhan penelitian, sedangkan nilai derajat bebas biasanya adalah banyaknya data dikurang satu (v = n – 1).(v=n−1).



Leave a Comment